South Australia's Environment Protection Authority

Beverley assessment area update

Community Working Group

Tuesday 25 July 2017

Overview

- Background
- Update on Stage 4A (broader works) Completed (awaiting final report)
- Update on Stage 4B (site specific works)
 - 1st sampling event (autumn) completed (April/May)
 - 2nd sampling event (winter) commencing next week
- Update on mitigation properties
- Community engagement update
- Thank you and questions

Background

Multiple objectives across three stages of work:

- Delineation of plume(s) ongoing
- Source(s) identification new source potentially discovered
- Sub-surface characterisation
- Preferential pathways analysed
- Updating the health risk assessment (still being finalised)
- Site specific works to do ongoing monitoring for properties
- Mitigation trial at two properties successful

- Groundwater and soil vapour concentrations have generally decreased over the past 12 months
- Soils are wetter than they were during the last monitoring events
- Groundwater depth has risen between 2016 and 2017
- Predominantly clay soils have been discovered with distinct sandy lenses in some areas
- We have had confirmation of some source locations and some sources include other chemical substances

- Further delineation of plume(s) has been largely achieved, although still not quite delineated to NW/W for groundwater and soil vapour
- One source has been confirmed between Pope Street and Howards Rd (current Toro site)
- New source(s) have been identified:
 - 1. NW assessment area
 - 2. Pope Ct (petroleum source)
 - 3. Pug hole to SW

- One source William and West Streets (MIP data was not overly conclusive as to the precise location of the source)
- Groundwater wells were installed deeper with a longer screen to:
 - better capture any fluctuations in the groundwater depth
 - consider areas where clay layers exist for a potential dense non-aqueous phase liquid (DNAPL) - contaminant that's heavier than the groundwater and sits at bottom of aquifer. The testing appears to confirm that this doesn't exist.

- Further sub-surface characterisation undertaken, which determined that the soil profile largely consists of clay to heavy clay with some sandy lenses
- Naturally occurring preferential pathways were confirmed
- In some locations the MIP results showed sandy lenses are evident at around 4 metres below ground level and 6 metres below ground level. This is important as soil vapour moves more easily through sand.

Source sites

https://www.youtube.com/watch?v=-xJ4u9YtDDo

South Australia's Environment Protection Authority

West St / William St source

Toro site source

South Australia's Environment Protection Authority

Pug hole source (not chlorinated hydrocarbons)

Old tank (waste oil source) petroleum hydrocarbons

The MIP instrument has five outputs in one:

- Photo-ionisation detector/flame ionisation detector (PID/FID) – used for detection of volatile organic compounds (primarily for petroleum hydrocarbons)
- Halogen specific detector (XSD) used for detection of chlorinated hydrocarbons

- Electrical conductivity (EC) used for gathering information about the sub-surface profile
- Hydraulic profiling tool (HPT) used for gathering information about the sub-surface profile

South Australia's Environment Protection Authority

South Australia's Environment Protection Authority

Stage 4B - monitoring continuing

- Site specific works:
 - 1. Soil vapour sampling
 - 2. Crawlspace/sub-slab sampling
 - 3. Indoor air sampling

South Australia's Environment Protection Authority

Stage 4B - monitoring continuing

- 16 properties were sampled
 - 14 residential
 - 2 commercial
- Varying sampling was undertaken at each property
 - 2 soil vapour bores (incl. 1 commercial)
 - 3 crawl spaces were sampled
 - 1 sub slab was sampled
 - 9 soil vapour, crawl space and indoor air samples were taken
 - 1 indoor air sampling was undertaken (commercial)

Stage 4B - results

Indoor air level response range (TCE)

- 1 x no action (safe)
- 3 x validation (safe)
- 10 x investigation (no immediate concerns, further assessment)
- 2 x intervention* (may be a health risk, immediately look at next steps and further assessment)

*Both properties in the intervention range were predicted from crawlspace data that assumes a 1:1 ratio (ie the same concentrations under the floor as in indoor air, which is not usual). Indoor air sampling will therefore be undertaken as part of the second monitoring event

Soil vapour migration

	Chemistry	Weather	Geology	Hydrology	Building	Biology
Vapour Intrusion More Likely	High Concentra- tions in soil, groundwater & soil vapour	Heating season Strong winds	Sandier soils Fractures Dry soils Preferential pathways (natural or artificial)	Shallow groundwater Groundwater depth fluctuation	No concrete slab (barrier) Basement Negative building pressure Low air exchange (circulation) Slab (good condition)	Aquifer conditions do not support degradation (aerobic)
Vapour Intrusion Less Likely	Low concentra- tions in soil, groundwater & soil vapour	Moderate climate Little wind	Clay soils Solid formation Wet soils	Deep groundwater Consistent depths	Positive Building Pressure, High air exchange (circulation)	Aquifer conditions support degradation (anaerobic)

Soil vapour migration

Soil vapour migration pathway in dry conditions

Soil vapour migration pathway limitations in moist conditions

Dry soil particles

Contaminated groundwater

Saturated soil particles

Update on mitigation properties

- Two of three properties completed with all validation sampling events no TCE detected indoors post installation
- Last sampling event occurring at first property this week and second to last sampling at second property this week
- Third property to commence shortly

Community engagement

- Two new assessment areas (Unley and Thebarton)
- Keswick soil vapour screening
- Other assessment areas
- Residents first
- Online engagement tool
- Evaluation and feedback

Sile Contamination

EPA

South Austra

Disposing of used engine oil can be a problem. Solution: Dig a hole in the ground with a posthole digger and fill it with fine gravel. Then pour in the oil. It will be absorbed into the ground before your next change. Cover the spot with soil.

phil-are-go.blogspot.com

166 POPULAR SCIENCE JANUARY 1963

Thank you & questions

