ANNUAL OCCUPATIONAL RADIATION MONITORING REPORT

License No. 50975

BEVERLEY, BEVERLEY NORTH AND FOUR MILE MINERAL LEASES

Occupational Monitoring Program

Annual Report - 2017
TABLE OF CONTENTS

1 EXECUTIVE SUMMARY..4
 1.1 Introduction ..4
 1.2 Occupational Radiation Monitoring ..4
 1.3 Occupational Dose Estimation ...4
 1.4 Adequacy and Effectiveness of Equipment and Procedures ...4

2 INTRODUCTION...4
 2.1 HGR Management Personnel ...5
 2.2 Summary of Process Activities and Changes ...6

3 OCCUPATIONAL RADIATION MONITORING...9
 3.1 Radon Decay Products ..9
 3.2 Long Lived Alpha Activity ...10
 3.3 External Gamma Dose Rate ..14
 3.3.1 Area Gamma Dose Rate Surveys ...14
 3.3.2 Dosimeter Results ...15
 3.4 Alpha Surface Contamination ...16

4 OCCUPATIONAL DOSE ESTIMATION ..17

5 DOSE ASSESSMENT...17

6 ADEQUACY AND EFFECTIVENESS OF EQUIPMENT AND PROCEDURES19

7 CONCLUSIONS..19

8 REFERENCES..20

Figures

- Figure 2-1: Map showing the wellfields mined in the Four Mile ML during 2017 7
- Figure 2-2: Map showing the wellfields mined in the Beverley North ML during 2017 8
- Figure 3-1: Radon Decay Products Monitoring Trends ... 10
- Figure 3-2: LLAA Concentration in Dust Monitoring Trends - Supervised and Office Areas ... 12
- Figure 3-3: LLAA Concentration in Dust Monitoring Trends - Controlled Areas 12
- Figure 3-4: LLAA Concentration in Dust Monitoring Trends - Personal Monitoring 13
- Figure 3-5: Gamma Dose Rate Monitoring Trend ... 14
- Figure 3-6: Annual Average TLD & OSL Badge Dose Trends ... 15
- Figure 3-7: Average Alpha Surface Contamination Trends .. 16
- Figure 5-1: Total Effective Dose Trends ... 17
- Figure 5-2: Average Total Effective Dose to each Workgroup from each Pathway - 2017 18

Tables

- Table 3-1: Radon Decay Product PAEC in the Plant and Wellfield - 2017 9
- Table 3-2: Radon Decay Product PAEC outside the Control Room - 2017 10
- Table 3-3: LLAA Concentrations from Dust at the Plant and Wellfield - 2017 11
Table 3-4: LLAA Concentrations from Dust in the Controlled Area - 2017 .. 11
Table 3-5: LLAA Concentrations from Personal Monitoring of Work - 2017 .. 11
Table 3-6: Gamma Dose Rate Survey Results for the Plant and Wellfield - 2017 14
Table 3-7: TLD and OSL Badge Dose by Work Group - 2017 ... 15
Table 3-8: Alpha Surface Contamination Survey Results for Plant and Wellfield - 2017 16
Table 5-1: Total Effective Dose Statistics - 2017 ... 17
Table 5-2: Average and Maximum Effective Dose for Exposure Pathways by Work Group - 2017 18
1 EXECUTIVE SUMMARY

1.1 Introduction
This report has been prepared in accordance with the requirements of the Heathgate Resources Pty Ltd (Heathgate) Radiation Management Plan v4.0 required as under Heathgate’s License 50975 to carry out mining and mineral processing, issued under the Radiation Protection Act 1982.

1.2 Occupational Radiation Monitoring
Radon decay products monitoring carried out in the plants and wellfields showed that the concentrations remained low during the year.
Area monitoring conducted at the plant supervised, wellfield and office areas showed that Long Lived Alpha Activity in dust remained consistently low.
Gamma dose rates throughout the plant and wellfield remained consistent with previous years’ monitoring results.
Alpha surface contamination in the plant and wellfield areas remained consistent with previous years’ monitoring results. Regular pressure cleaning helped minimise surface contamination levels in these areas.

1.3 Occupational Dose Estimation
Doses to employees and contractors at the Beverley, Beverley North and Four Mile Mines remained low during the year.
There were a total of 297 employees and contractors at the Beverley, Beverley North and Four Mile Mines during 2017.
The average worker dose of 0.43 mSv, less than the annual effective dose limit of 1 mSv to members of the public, and significantly less than the worker dose limit of 20 mSv/yr.
The maximum dose for the year was 2.95 mSv, also well below the worker dose limit of 20 mSv/yr.

1.4 Adequacy and Effectiveness of Equipment and Procedures
Reviews of policies, procedures and equipment installed to manage radiation doses to ensure that doses to employees remain as low as reasonably achievable (ALARA) for 2017 included:
- A review of the radiation monitoring program’s Standard Operating Procedures (SOP).
- A review of the radiation monitoring program’s equipment. Several new devices were sourced.
- Preventive maintenance of Dryer system and Ion Exchange Columns were carried out.
- One of the Ion Exchange Column was quoted with a new type of synthetic material that last long and reduces the frequency of repair. This also reduces the radioactive dust generated during maintenance thus helps to reduce the dose contribution from LLA Dust.

2 INTRODUCTION
This report is prepared in accordance with the requirements of the Beverley, Beverley North and Four Mile Radiation Management Plan (RMP), License to Carry out Mining or
Mineral Processing (50975) under the Radiation Protection and Control Act, 1982. It provides a summary of all monitoring conducted during the calendar year 2017, previously reported in the quarterly Occupational Radiation Monitoring Reports.

The RMP’s document the strategies developed by Heathgate for the:

- Identification of potential radiation sources
- Monitoring of radiation exposures
- Assessment of employee dose
- Management of radiation exposures to ensure compliance with the ALARA principle.

The objective of a RMP is to assist Heathgate to fulfil its statutory requirements detailed in the Code of Practice on Radiation Protection and Radioactive Waste Management in Mining and Mineral Processing (2005) and to comply with the relevant State and Commonwealth legislation.

The main radiation issues considered by the RMP and reported in this document are:

- Radon decay products inhalation
- Long lived alpha activity in dust inhalation
- Gamma dose external exposure
- Alpha contamination of surfaces
- Calculation of employee radiation dose
- Compliance with the ALARA principle.

2.1 HGR Management Personnel

Heathgate personnel, who are currently responsible for radiation management at the Beverly site, are as follows:

- President – Craig Bartels
- Operations Manager — Andrea Marsland-Smith
- Production Managers — Chris Every and Chris Heinrich
- Regulatory and Compliance Superintendent– Kathryn Levingstone
- Chief Environment and Radiation Advisor – Kelly Pelgrim
- Senior Radiation Advisor — Sankaran Kutty
- Radiation Advisor — Martin Jane

The statutory position of Radiation Safety Officer is held by Sankaran Kutty, whose contact details are provided below:

Sankaran Kutty – Senior HSSE Advisor
Heathgate Resources
Suite 1, Level 7, 25 Grenfell St
Adelaide SA 5000
Adelaide Office: Ph: 08 8110 0500 Fax: 08 8212 5559
Beverley Site: Ph: 08 8413 2238 Fax: 08 8648 4628
2.2 Summary of Process Activities and Changes

A current map of the three mining tenements for Beverley, Beverley North and Four Mile and associated mining activity during 2017 is provided in Figure 2-1 and Figure 2-2. No wellfields within the Beverley ML were operated in 2017, however, water management activities were undertaken in the central, south and east wellfields. Actively mined wellfields during 2017 were within the Beverley North Pepegoona wellfields, and the Four Mile North, Four Mile West, Four Mile East and North East wellfields (see Figure 2-2 and Figure 2-1). The processing of uranium continued to be undertaken at the satellite plants within Beverley North, and the main Beverley Plant.

A number of modifications were made to processes during the year which had an impact on occupational exposures:

- Regular preventive maintenance was carried out in the Dryer that helped to minimise LLA dust concentrations in the controlled area.

- Inspections and preventive maintenance of all Ion Exchange Columns at Beverley Pepegoona and Pannikan plants were carried out. This resulted in better efficiency of the columns, minimised breakdowns and thus helped to reduce occupational dose from confined space entries.

- Work commenced on the installation of a new type of lining material in the IX columns to replace the rubber liner with the aim of reducing breakdowns and the need to carry out maintenance work in the columns. The column was returned to service in early 2018 and its performance is being monitored.

- Commissioning of the new Decant Filter used to filter the waste solutions from the Beverley Processing Plant. The new system is automated and requires minimal maintenance reducing exposure to radiation sources when compared to previous filtration systems.

- Implemented changes to the way dust monitoring results in the Dryer enclosure are distributed to improve area managers and supervisors can make take immediate actions when increasing concentrations are detected.

- Pepegoona Satellite Plant was turned off in August 2017. Lowering the overall exposure levels for operators and maintenance staff. Less columns to maintain so less potential for breakdowns and column entries.
Figure 2-1: Map showing the wellfields mined in the Four Mile ML during 2017
Figure 2-2: Map showing the wellfields mined in the Beverley North ML during 2017
3 OCCUPATIONAL RADIATION MONITORING

The occupational radiation monitoring conducted throughout the year included the measurement of radiation levels at the Beverley Process Plant, Process Plant Offices, Wellfields, Weather Tower, Camp, Beverley North Satellite Plants and Wellfields and Four Mile Wellfields. The frequency of monitoring was conducted according to the Radiation Management Plans. This monitoring included the following:

- Radon Decay Products area monitoring
- Long Lived Alpha Activity (LLAA) in dust personal and area monitoring
- Area gamma radiation surveys
- Alpha surface contamination monitoring.

3.1 Radon Decay Products

The Potential Alpha Energy Concentration (PAEC) of radon decay products was measured throughout the plants and wellfield areas. Monitoring was conducted according to the approved Standard Operating Procedure (SOP)\(^3\).

The average and maximum concentrations measured at various locations throughout the year are given in Table 3-1. Trends of annual averages since commencement of operations are presented in Figure 3-1.

Radon Decay Products monitoring throughout the site showed PAEC to remain consistently low. Average concentrations across the site remain well below the internal investigation level of 2 μJm\(^{-3}\).

<table>
<thead>
<tr>
<th>Location</th>
<th>PAEC (μJm(^{-3}))</th>
<th>Average</th>
<th>Max</th>
<th>Number 12 Hours Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drilling</td>
<td>0.04</td>
<td>0.16</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Environmental</td>
<td>0.04</td>
<td>0.12</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0.03</td>
<td>0.11</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Plant Clean</td>
<td>0.05</td>
<td>0.54</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Plant Supervised</td>
<td>0.07</td>
<td>0.14</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Wellfield</td>
<td>0.05</td>
<td>0.26</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

3 Routine Radon Decay Products Area Monitoring Using ERDM, Standard Operating Procedure RAD 002, Heathgate, March 2017
The Potential Alpha Energy Concentration (PAEC) of radon decay products was also monitored continually outside the Beverley Control Room.

The concentrations measured remained low and below the investigation level throughout the year. The average and maximum concentrations measured are given in Table 3-2.

Table 3-2: Radon Decay Product PAEC outside the Control Room - 2017

<table>
<thead>
<tr>
<th>Month</th>
<th>PAEC (µJm⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
</tr>
<tr>
<td>Jan 17</td>
<td>0.04</td>
</tr>
<tr>
<td>Feb 17</td>
<td>0.04</td>
</tr>
<tr>
<td>Mar 17</td>
<td>0.05</td>
</tr>
<tr>
<td>Apr 17</td>
<td>0.05</td>
</tr>
<tr>
<td>May 17</td>
<td>0.07</td>
</tr>
<tr>
<td>Jun 17</td>
<td>0.07</td>
</tr>
<tr>
<td>Jul 17</td>
<td>0.04</td>
</tr>
<tr>
<td>Aug 17</td>
<td>0.04</td>
</tr>
<tr>
<td>Sep 17</td>
<td>0.04</td>
</tr>
<tr>
<td>Oct 17</td>
<td>0.04</td>
</tr>
<tr>
<td>Nov 17</td>
<td>0.04</td>
</tr>
<tr>
<td>Dec 17</td>
<td>0.03</td>
</tr>
</tbody>
</table>

3.2 Long Lived Alpha Activity

Long Lived Alpha Activity (LLAA) sampling was conducted throughout the Plant controlled, supervised and clean areas and in the Wellfield. Monitoring was conducted according to the approved SOP⁴ and frequencies. Details of the average, maximum and minimum
concentrations at locations around the site, in the controlled area and for personal monitoring of operators are given in Table 3-3, Table 3-4 and Table 3-5 respectively. Trends of annual averages since commencement of operations are presented in Figure 3-2, Figure 3-3 and Figure 3-4.

Long Lived Alpha Activity in dust monitoring conducted in the Plant, Wellfield and other areas of the site remain low. The dust management programs detailed in the radiation management plan are thus considered sufficient to ensure doses via this pathway remain as low as reasonably achievable.

Table 3-3: LLAA Concentrations from Dust at the Plant and Wellfield - 2017

<table>
<thead>
<tr>
<th>Location</th>
<th>Average</th>
<th>Max</th>
<th>Min</th>
<th>Std Dev</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2</td>
</tr>
<tr>
<td>Beverley FLT</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>--</td>
<td>1</td>
</tr>
<tr>
<td>Other</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>--</td>
<td>1</td>
</tr>
<tr>
<td>Plant Clean</td>
<td>0.01</td>
<td>0.15</td>
<td>0.00</td>
<td>0.03</td>
<td>37</td>
</tr>
<tr>
<td>Plant Supervised</td>
<td>0.02</td>
<td>0.32</td>
<td>0.00</td>
<td>0.04</td>
<td>78</td>
</tr>
<tr>
<td>Wellfield</td>
<td>0.02</td>
<td>0.21</td>
<td>0.00</td>
<td>0.04</td>
<td>23</td>
</tr>
</tbody>
</table>

The average and maximum dust concentrations in all the above areas remained low.

Table 3-4: LLAA Concentrations from Dust in the Controlled Area - 2017

<table>
<thead>
<tr>
<th>Location</th>
<th>Average</th>
<th>Max</th>
<th>Min</th>
<th>Std Dev</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dryer</td>
<td>1.60</td>
<td>19.80</td>
<td>0.01</td>
<td>2.44</td>
<td>175</td>
</tr>
<tr>
<td>Dryer security room</td>
<td>0.03</td>
<td>0.34</td>
<td>0.00</td>
<td>0.05</td>
<td>47</td>
</tr>
<tr>
<td>Packing room</td>
<td>1.19</td>
<td>6.51</td>
<td>0.00</td>
<td>1.21</td>
<td>48</td>
</tr>
<tr>
<td>Packing Warehouse</td>
<td>0.02</td>
<td>0.13</td>
<td>0.00</td>
<td>0.02</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 3-5: LLAA Concentrations from Personal Monitoring of Work - 2017

<table>
<thead>
<tr>
<th>Type</th>
<th>Average</th>
<th>Max</th>
<th>Min</th>
<th>Std Dev</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dryer Operator</td>
<td>0.28</td>
<td>9.99</td>
<td>0.00</td>
<td>0.89</td>
<td>144</td>
</tr>
<tr>
<td>Maintenance</td>
<td>0.03</td>
<td>0.30</td>
<td>0.00</td>
<td>0.05</td>
<td>93</td>
</tr>
<tr>
<td>Wellfield</td>
<td>0.07</td>
<td>0.64</td>
<td>0.00</td>
<td>9.12</td>
<td>72</td>
</tr>
<tr>
<td>Drilling</td>
<td>0.14</td>
<td>0.18</td>
<td>0.10</td>
<td>0.06</td>
<td>2</td>
</tr>
</tbody>
</table>

Airstream Helmets worn by these operators have a Protection Factor (PF) of 10, this is has not been taken into account but would reduce concentration by 10 times.

5Airstream Helmets worn by these operators have a Protection Factor (PF) of 10, this is has not been taken into account but would reduce concentration by 10 times.
Figure 3-2: LLAA Concentration in Dust Monitoring Trends - Supervised and Office Areas

Figure 3-3: LLAA Concentration in Dust Monitoring Trends - Controlled Areas
Figure 3-4: LLAA Concentration in Dust Monitoring Trends - Personal Monitoring
3.3 External Gamma Dose Rate

3.3.1 Area Gamma Dose Rate Surveys

External gamma dose rate surveys were conducted throughout all work areas in the Plant and Wellfield. Monitoring was conducted according to the approved SOP\(^6\).

Details of the average, maximum and minimum dose rates at each location during 2017 are given in Table 3-6. Trends in annual average dose rates since commencement of operations are presented in Figure 3-5.

Average gamma dose rates remained consistent throughout the year.

Table 3-6: Gamma Dose Rate Survey Results for the Plant and Wellfield - 2017

<table>
<thead>
<tr>
<th>Location</th>
<th>Gamma Dose Rate ((\mu\text{Sv/h}))</th>
<th>Average</th>
<th>Max</th>
<th>Min</th>
<th>Std Dev</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drilling</td>
<td></td>
<td>0.75</td>
<td>4.00</td>
<td>0.05</td>
<td>1.07</td>
<td>26</td>
</tr>
<tr>
<td>Plant Clean</td>
<td></td>
<td>0.21</td>
<td>0.50</td>
<td>0.05</td>
<td>0.12</td>
<td>38</td>
</tr>
<tr>
<td>Plant Controlled</td>
<td></td>
<td>0.75</td>
<td>1.70</td>
<td>0.30</td>
<td>0.35</td>
<td>14</td>
</tr>
<tr>
<td>Plant Supervised</td>
<td></td>
<td>1.51</td>
<td>9.00</td>
<td>0.01</td>
<td>2.08</td>
<td>49</td>
</tr>
<tr>
<td>Wellfield</td>
<td></td>
<td>2.59</td>
<td>30.00</td>
<td>0.10</td>
<td>4.46</td>
<td>56</td>
</tr>
</tbody>
</table>

![Gamma Dose Rate Monitoring Trend](image)

Figure 3-5: Gamma Dose Rate Monitoring Trend

\(^{6}\) Routine Gamma Dose rate Survey, Standard Operating Procedure RAD 001, Heathgate, March 2017
3.3.2 Dosimeter Results

Thermoluminescent Dosimeter (TLD) badges were issued to all permanent staff and long term contractors at the Beverley Site. They were also issued to temporary contractors who may be undertaking work in areas of higher than usual gamma dose rates. During the fourth quarter for 2017 TLD badges were replaced with Optically Stimulated Luminescence (OSL) Badges.

Details of the average, maximum and minimum gamma dose on TLD and OSL badges for each workgroup are given in Table 3-7. Trends in annual average gamma doses since commencement of operations are presented in Figure 3-6. These average results are hourly weighted for each workgroup then allocated as an hourly dose rate to personnel who have either lost their badges or have not yet been issued with a badge. The final gamma dose statistics, including allocated doses, are presented in Figure 5-1.

Average TLD and OSL badge doses for 2017 remained consistently low.

Table 3-7: TLD and OSL Badge Dose by Work Group - 2017

<table>
<thead>
<tr>
<th>Work Group</th>
<th>Gamma Dose (mSv)</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>Max</td>
</tr>
<tr>
<td>Production</td>
<td>0.29</td>
<td>1.33</td>
</tr>
<tr>
<td>Maintenance</td>
<td>0.25</td>
<td>1.14</td>
</tr>
<tr>
<td>Geology & Drilling</td>
<td>0.02</td>
<td>0.20</td>
</tr>
<tr>
<td>Projects</td>
<td>0.09</td>
<td>0.39</td>
</tr>
<tr>
<td>Other</td>
<td>0.05</td>
<td>0.11</td>
</tr>
<tr>
<td>Contractors</td>
<td>0.08</td>
<td>0.25</td>
</tr>
</tbody>
</table>

* Production Personnel – Plant and Wellfield Operators, laboratory staff and supervisors
 Geology & Drilling – Drillers, geologists and support staff
 Others – Environment, Safety, Radiation and other office based staff
 Contractors – All site contractors with exception of drillers
 Projects – Construction personnel.

Figure 3-6: Annual Average TLD & OSL Badge Dose Trends
3.4 Alpha Surface Contamination

Alpha surface contamination surveys were conducted in the Crib Rooms, Control Rooms, Offices, Change Rooms, Plants and Wellfields. Monitoring was conducted according to the approved SOP\(^7\).

Details of the contamination monitoring conducted in the Plant, Wellfield and Clean Areas for 2017 are given in Table 3-8. Trends in annual average surface contamination values are presented in Figure 3-7.

Regular pressure cleaning is conducted in the plant supervised and controlled areas to reduce the surface contamination levels.

Table 3-8: Alpha Surface Contamination Survey Results for Plant and Wellfield - 2017

<table>
<thead>
<tr>
<th>Location</th>
<th>Alpha Surface Contamination (Bq/cm(^2))</th>
<th>Average</th>
<th>Max</th>
<th>Min</th>
<th>Std Dev</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drilling</td>
<td></td>
<td>0.14</td>
<td>2.13</td>
<td>0.00</td>
<td>0.37</td>
<td>95</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>0.02</td>
<td>0.67</td>
<td>0.00</td>
<td>0.07</td>
<td>139</td>
</tr>
<tr>
<td>Plant Clean</td>
<td></td>
<td>0.15</td>
<td>5.33</td>
<td>0.00</td>
<td>0.45</td>
<td>306</td>
</tr>
<tr>
<td>Plant Controlled</td>
<td></td>
<td>2.63</td>
<td>24.00</td>
<td>0.01</td>
<td>4.02</td>
<td>273</td>
</tr>
<tr>
<td>Plant Supervised</td>
<td></td>
<td>2.00</td>
<td>18.67</td>
<td>0.00</td>
<td>2.60</td>
<td>207</td>
</tr>
<tr>
<td>Wellfield</td>
<td></td>
<td>0.81</td>
<td>26.67</td>
<td>0.01</td>
<td>2.15</td>
<td>178</td>
</tr>
</tbody>
</table>

Figure 3-7: Average Alpha Surface Contamination Trends

\(^7\) Alpha Surface Contamination Monitoring, Standard Operating Procedure RAD 007, Heathgate, May 2017
4 OCCUPATIONAL DOSE ESTIMATION

This chapter presents the results of annual occupational dose calculations for 2017. Dose assessment methodology is presented in Appendix 1 and is based on the 1994 ICRP 68 and 1996 IAEA Safety Series 115 methodology.

5 DOSE ASSESSMENT

During the year, there were a total of 297 employees and contractors working at the Beverley and Beverley North Sites. The total effective dose descriptive statistics for these employees are given in Table 5-1. Trends of the average and maximum dose since commencement of operations are presented in Figure 5-1.

Table 5-1: Total Effective Dose Statistics - 2017

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Dose (mSv)</td>
<td>0.43</td>
</tr>
<tr>
<td>Maximum Dose (mSv)</td>
<td>2.95</td>
</tr>
<tr>
<td>Minimum Dose (mSv)</td>
<td>0.00</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.46</td>
</tr>
<tr>
<td>Number of Employees</td>
<td>297</td>
</tr>
<tr>
<td>Dose limit (mSv)</td>
<td>20</td>
</tr>
</tbody>
</table>

Employees and contractors were assigned to various work groups based on their major tasks. The average and maximum effective doses to each of these work groups from each of the exposure pathways are presented in Table 5-2: Average and Maximum Effective Dose for Exposure Pathways by Work Group and the average is presented in Figure 5-2.

Doses to employees at the Beverley, Beverley North and Four Mile sites remained consistently low and below all applicable limits.
Table 5-2: Average and Maximum Effective Dose for Exposure Pathways by Work Group - 2017

<table>
<thead>
<tr>
<th>Work Group *</th>
<th>LLAA (mSv)</th>
<th>RnD (mSv)</th>
<th>Gamma (mSv)</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>Max</td>
<td>Average</td>
<td>Max</td>
</tr>
<tr>
<td>Production</td>
<td>0.23</td>
<td>0.83</td>
<td>0.13</td>
<td>0.20</td>
</tr>
<tr>
<td>Maintenance</td>
<td>0.09</td>
<td>0.33</td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>Geology & Drilling</td>
<td>0.06</td>
<td>0.12</td>
<td>0.11</td>
<td>0.22</td>
</tr>
<tr>
<td>Projects</td>
<td>0.13</td>
<td>0.16</td>
<td>0.15</td>
<td>0.19</td>
</tr>
<tr>
<td>Other</td>
<td>0.08</td>
<td>0.21</td>
<td>0.09</td>
<td>0.28</td>
</tr>
<tr>
<td>Contractors</td>
<td>0.10</td>
<td>0.21</td>
<td>0.11</td>
<td>0.23</td>
</tr>
</tbody>
</table>

* Production – Plant and Wellfield operators, laboratory staff and supervisors
Geology & Drilling – Drillers, geologists and support staff
Others – Environment, Safety, Radiation and other office based staff
Contractors – All site contractors with exception of drillers
Projects – Construction personnel

![Figure 5-2: Average Total Effective Dose to each Workgroup from each Pathway - 2017](image-url)
6 ADEQUACY AND EFFECTIVENESS OF EQUIPMENT AND PROCEDURES

The average and maximum doses received by workers at the Beverley, Beverley North and Four Mile sites during the year remained well below the statutory limits. The average dose received by employees and contractors is lower than the statutory limit for members of the public.

Although dose rates to the majority of employees remain very low, the effectiveness of engineering and administrative radiation controls are continuously reviewed to ensure that doses to employees remain As Low As Reasonably Achievable (ALARA). During 2017 a number of improvements to Heathgate’s radiation management system were identified and improvements undertaken, the section below details these key activities.

Management Systems/Procedures

- All radiation monitoring Standard Operating Procedures (SOP) were reviewed in 2017
- The INX Incontrol database was modified to include radiation incidents and hazards. This allows better tracking of investigations, root causes and actions

Training

- Several sessions of worker radiation safety training were provided to impart radiation safety knowledge to permanent, contract and casual employees.
- The radiation safety training program was also updated during 2017.
- Employee safety meetings and everyday morning tool box meetings were used as a platform to discuss the radiation safety issues and implement corrective actions when required. Supervisors Safety Meetings were also used to discuss radiation safety related items and to implement corrective actions.

Equipment

A large review of monitoring equipment was completed and new monitoring equipment was purchased to support the monitoring program set out in the Radiation Management Plan. This included:

- Durridge Radon In Water Monitor
- Thermo Scientific Gamma Spectrometer
- Thermo scientific EPD MK2+
- Algade MEAP V RnDP Monitor
- Ludlum Model 3000 Digital Contamination Survey Meter
- Thermo RADEye B20-ER Survey Meter
- Ludlum Model 2401-P Survey Meter

Personal dosimeters were changed from ARPANSA Thermo Luminescence Dosimeters to Landauer Australia Optically Stimulated Luminescence Dosimeters

7 CONCLUSIONS

The results of the LM7 Radiation Monitoring Program have shown that no employee was exposed to unacceptable levels of radiation during 2017.

Doses received by employees and contractors working at the Beverley, Beverley North and Four Mile sites remain well below all statutory limits. The Radiation Management Plan and associated site procedures like the Radiation Work Permit systems have also been reviewed and updated to ensure doses are kept As Low As Reasonably Achievable.
8 REFERENCES

2. Code of Practice on Radiation Protection and Radioactive Waste Management in Mining and Mineral Processing (2005), ARPANSA (RPS 9)
3. IAEA Safety Series No. 115, Basic Safety Standards for the Protection Against Ionizing Radiation and for the Safety of Radiation Sources, IAEA, 1996
APPENDIX 1

Occupational Dose Assessment Methodology
METHOD

Total effective dose was calculated as the sum of the three exposure pathways as detailed in the Code of Practice on Radiation Protection and Radioactive Waste Management in Mining and Mineral Processing, 2005.

- Inhalation of Long Lived Alpha Activity in Dust
- Inhalation of Radon Decay Products
- External exposure to Gamma Radiation.

Inhalation of Long Lived Alpha Activity in Dust.

The effective dose due to the inhalation of Long Lived Alpha Activity (LLAA) in Dusts has been calculated from the following equation.

\[E_{LLAA} = [\text{LLAA}] \times DCF \times BR \times IT \]

Where:

- \(E_{LLAA} \) = Effective dose due to inhalation of LLAA (mSv)
- \([\text{LLAA}]\) = Average Concentration of LLAA (Bqm\(^{-3}\))
- DCF = Dose conversion factor (mSv/Bq)
- BR = Breathing Rate (1.2 m\(^3\)h\(^{-1}\))
- IT = Inhalation Time (h).

The dose conversion factor used for the Beverley Uranium Mine is 0.0019 mSv/Bq, obtained from IAEA Safety Series 115 \(^3\) using the default AMAD of 5 mm and a solubility class of M.

Doses for workgroups other than Geology and Drilling, Contractors and HSSE/Admin are calculated monthly from the average of all personal dust monitoring conducted during the month for each workgroup and the hours spent by each employee in that workgroup. Time information was taken from the “In Flight” database where the onsite working time of all employees is recorded. No allowance for any respiratory protection that may have been worn has been made. The lack of this allowance for respiratory protection factor gives a slight overestimate in the dryer operator dose, however the majority of their shift is spent in clean areas where no respirator is worn and the dust sample is still being collected. This method was considered the closest estimate obtainable.

Dose to the Geology and Drilling workgroup is taken from the average of area dust monitoring in the wellfield and drilling areas for the months and hours worked. Time information is obtained from the “In Flight” database.

Dose to the Contractors and HSSE/Admin workgroups is taken from the average of all area monitoring conducted around site for the month. Area sampling conducted in the Dryer and packaging areas is divided by the respiratory protection factor 10 before being averaged since these areas require the compulsory wearing of an airstream helmet. Hours are obtained from the “In Flight” database.
Inhalation of Radon Decay Products

The committed effective dose due to the inhalation of radon decay products (RnD) has been calculated from the following equation.

\[E_{\text{RnD}} = PAEC \times DCF \times IT \]

Where:
- \(E_{\text{RnD}} \) = Effective dose due to inhalation of RnD (mSv)
- \(PAEC \) = Average Potential Alpha Energy Concentration (\(\mu \text{Jm}^{-3} \))
- \(DCF \) = Dose conversion factor (0.0014 mSv/\(\mu \text{Jm}^{-3}/\text{h} \))
- \(IT \) = Inhalation Time (h).

Doses were calculated monthly from the average PAEC in each work area and the time spent by each employee in that area.

External Exposure to Gamma Radiation

The external exposure to gamma radiation was monitored using Thermoluminescent Dosimeter (TLD) badges supplied by the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). During the fourth quarter for 2017 TLD badges were replaced with Optically Stimulated Luminescence (OSL) Badges supplied by Landauer. Badges are issued to all employees and longer-term contractors for a period of three months. Any short-term contractors or employees who lose their badges are assigned a pro-rata dose based on their work group average and total hours.

Badges are worn close to the employee’s body for the duration of the shift and stored on a control board at all other times.