River Health on Eyre Peninsula

Blackfly larva (Simulium ornatipes)
Aquatic macroinvertebrates on Eyre Peninsula

The region is not very diverse, with less than 250 types of aquatic macroinvertebrates being recorded from 1994–1999. The high salinity of most streams in the region excludes many species that prefer freshwater environments. The most common members include amphipod crustaceans (*Austrochiltonia australis*), chironomid midge larvae (e.g. *Chironomus* and *Tanytarsus* species), blackfly larvae (*Simulium ornatipes*), hydrobiid snails, oligochaetes (worms) and nematodes (roundworms).

A number of rare types of macroinvertebrates are found in streams in the region. They include the saline tolerant caddisfly larva (*Symphitoneuria wheeleri*) that occurs in low numbers in Salt Creek north of Cleve. A number of uncommon species occur in the Tod River catchment including hydra, nemertean (proboscis worms), Corophiidae crustacean amphipods and dytiscid beetle *Onychohydrus scutellaris* larva. Other regionally rare examples include the mayfly *Cloeon* species from Coonta Creek, aquatic bug *Hydrometra* species from Yeldulknie Creek, midge larva *Botryochladius petrophilus* from Meadows Creek and dragonfly larva *Diplacodes bipunctata* from Waterfall Creek.
Macroinvertebrates are aquatic animals without backbones that are large enough to be seen with the naked eye. They include insects, crustaceans, snails, worms, mites and sponges. The insects include yabbies, shrimps and prawns.

What are macroinvertebrates?

Macroinvertebrates are aquatic animals without backbones that are large enough to be seen with the naked eye. They include insects, crustaceans, snails, worms, mites and sponges. The insects include the larvae of flying insects (e.g. midges, two-winged flies, dragonflies, mayflies, stoneflies and caddisflies) and adults of some groups (e.g. waterbugs, beetles, springtails). The more familiar crustaceans include yabbies, and freshwater shrimps and prawns.

Why use macroinvertebrates?

Macroinvertebrates are most commonly used in biological monitoring studies because they are common, widely distributed, easily sampled and readily identified by experienced biologists.

Why worry about river health?

The decline of water quality, blooms of blue-green algae, contamination with pesticides, nutrients and sediment, microbes that threaten drinking water supplies, fish deaths, and the threats posed by increasing salinity are some of the widespread issues that affect many waterways in Australia. This often leads to questions about the overall health of rivers and streams and the actions we should take to improve the environmental condition of our waterways.

What is river health?

Defining ‘river health’ is similar to defining human health, as it provides an overall assessment of the health of waterways. It is important to note that the concept of ‘health’ often has different meanings to different people, and largely depends on each person’s values and knowledge. However, for our purposes when we describe river health we are really talking about the ecological condition of a waterway.

It’s not just about rivers, but also includes streams, creeks and earthen drains.

How do we measure river health?

We measure river health by comparing the condition of a river to similar rivers of the same type in an undisturbed, unimpacted state (i.e. reference condition). To provide a nationally consistent approach, all States and Territories have used aquatic macroinvertebrates as the major biological indicator group to focus on and model. Our assessments provide a measure of the degree of similarity between the aquatic macroinvertebrates found at each site and those predicted to occur at the site if it were not impacted.
Site Description

- More biologically diverse than reference sites (needs detailed investigation) (X)
- Reference site
- Reference condition (A)
- Significantly impaired (B)
- Severely impaired (C)
- Beyond the capacity of current AUSRIVAS models (?)

B / C - Site that varies in condition from one year to the next

Land Type

- Lake
- Land
- Ocean
- River
- Towns
- Streams
Riverine environments on Eyre Peninsula

A vast plain with many isolated peaks and low, discontinuous ranges to the north, east and south dominates the Eyre Peninsula.

The climate in the region consists of long, dry and hot summers and cooler, moderately wet winters. Mean annual rainfall ranges from about 250 mm in the Gawler Ranges in the north to greater than 550 mm south of Port Lincoln.

Most streams in the region are seasonal (dry during the summer months) and range from saline to brackish waters. They generally occupy the eastern side of the peninsula, apart from Salt, Edillilie and Minniribbie creeks that drain the Edillilie to Wangary area. The larger streams north of Arno Bay include the highly saline Dutton River and Salt Creek.

The only significant surface water resource in the region is the Tod River, with a catchment area of about 395 km² to the north of Port Lincoln. Land clearance has increased the salinity of surface water in the Tod reservoir since 1930, and the current average salinity in the river is over 6000 mg/L.

The rainfall patterns and low topography create a range of different stream habitats. Despite the lack of flow and surface water during summer, many systems flow for several months during autumn and spring. They include Pillaworta Creek, parts of Tod River, Mine Creek and a few sites on Salt Creek near Mangalo.

Other creeks had low flows in autumn and were only isolated pools in spring. They include Meadows Creek, Rock Valley Creek, parts of Tod River, and one site from Salt Creek at Yorkies Crossing.

The other major stream type in the region consists of still water pools in autumn and spring. Examples include Coonta, Yeldulknie, Salt, Minniribbie, Waterfall, Pokalalie and Millalee creeks and the Dutton River.

River health on Eyre Peninsula

The map provides an overall assessment of the health of individual sites in the region.

The better waterways were typically located in the Tod River catchment and several nearby coastal streams. Coonta Creek and a small, unnamed creek south of the Tod River both had more species present than expected for lowland brackish streams, and were given a biodiverse rating. Sites from Edillilie and Minniribbie creeks were generally in good condition in relation to other saline streams in the State.

The waterways that rated poorly were generally from the most saline streams such as Dutton River, Driver River, some sites from Salt Creek near Cleve and several smaller salty waterways.
Peter Goonan is the Project Manager for S.A. and can be contacted at the Environment Protection Authority on (08) 8204 2044.

Chris Madden, Paul McEvoy and Daria Taylor provided technical input to this project and can be contacted at the Australian Water Quality Centre on (08) 8259 0336.

Bruce Gray from Environment Australia administered this national program and can be contacted on (02) 6274 2526.

Additional details are available at
http://ausrivas.canberra.edu.au